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Abstract

Presents some basic principles of the solution of large systems of simultaneous linear equations by sparsity

methods, particularly Zollenkopf’s bifactorisation method, and describes diakoptics (Gabriel Kron’s method of

tear ing ) . Implications of these two approaches, used together, are discussed with particular reference to system

optimization and finite-element analysis of nonlinear and large prOblerns.

Introduction

The manipulation and solution of sets of simultan-

eous equations is basic to most of the techniques em-

ployed in computer solution of field problems, network

analyais and optimization methods.

In many problems the frequent attribute of sparse-
ness, meaning that few nonzero elements exist, has per–

mitted the design of special algorithms that allow

practical problems to be solved. For example finite

difference methods, that produce large sparse matrices

of order of 5 000 - 20 000 [1,21, are conveniently

solved by the use of the successive overrelaxation

(SOR) iterative scheme with all unknowns kept in the

fast store.

Direct methods, that treat matrices as dense, are

necessarily limited to about 150 unknowna in a reason–

ably large modern computer. On the other hand direct

methods employing sparsity techniques, and clever
scheduling of disk transfers, allow solution of large
systems. These solutions can be obtained without the

inconvenience of having to guess at the acceleration
factor and to suffer the possibility of erratic con–
vergence behaviour and associated computational costs.

Sparsity methods have been used most notably in

the solution of networks (e.g.electrical power systems

[3,5] and structural analysis) and in linear program-

ing optimization methods [61. A goodreview of some
microwave application is given in [14]. Insofar as

nonlinear optimization problems are concerned the New-

ton–Raphson approach has been used in load-fl~wproblems

and recently Sasson and others [7] have employed spar-
sity techniques in the gradient method applied to the
same problem. There can be no doubt that general opt-

imization methods (e.g. Bandler [s1 andCharalambous
[13]) will experience significant improvements when
sparsity methods are employed for large systems.

Objectives

The objectives of this tutorial paper are as

follows:

(a) To present an introduction to the principles be-
hind the solution of large systems of equations through
direct methode that exploit matrix sparsity. The in–

production begins with a review of Gaussian elimination
and back–substitution and its relationship to LU decom-
position, symmetric Choleeki factorization, and its

application to band-storage and sparsity techniques.
The importance of employing an optimal elimination se-

quence, in order to maintain sparsity, iS pointed out.

(b) To present solution schemes for the repeated and
efficient solution of &_ = ~ for many right-hand sides,
in which case one would like to have the i~yerse of A

available as a matter of economy. Since A can be

dense, although A is sparse, the storage of an explicit
inverse is generally an impossible task for large pro–
blems. A clasa of efficient techniques is based upon

the computation of very sparse matrix factore of A
-1

which may be packed into approximately the same storage

space as A itself. A very useful method, which is out-
lined, is due to Zollenkopf [9].

(c) To describe diakoptics (Gabriel Kron’s method of
tearing) with application to electrical networks [10,11]

and finite element matrices [12]. This method holds
great promise for the optimization of large systems in
which it would be intolerable to invert the entire im-

pedance matrix each time a small portion of the network
is changed. An analogous situation in finite-element
analysis is the solution of a field in a nonlinear

medium (e.g. the saturation of a pole tip on the rotor

of an electrical machine or the optimization of a por-

tion of a microstrip structure). Again, as only a

small portion of the square finite-element matrix is

altered, it seems wasteful to invert the entire matrix
many times. Diakoptics permits the nonlinear portion

to be excised, the matrix corresponding to the linear
portion to be inverted (through Zollenkopf’s method,

preferably), and the contribution due to the nonlinear
portion to be blended into the larger system at a very

small additional cost. In this way successive itera-

tion, for the solution of nonlinear problems may be rel-

atively cheaply done. In effect, it involves recom-

putation and inversion of the nonlinear portion alone.

It should be pointed out that diakoptics supplies an

exact solution of a dissected linear system and it is

not a block-iterative scheme. Iteration is, required

for a nonlinear problem, however, due to changing par-
ameters.

An immensely important function for diakoptics is

in handling huge problems that cannot be held entirely
in the fast store. In such cases it may be possible to
tear the total problem into subsections, each of which
can only just be accommodated in the fast store. Each
subsystem can then be inverted in turn while subsequent-

ly transferring blocks of numbers to and from the back-

ing atore in sequence. In this way, huge systems can
be solved economically. A byproduct of the diakoptical

approach is that whereae the large system may be highly
ill-conditioned, the individual subsystem will likely

suffer much less from this form of instability. Aa a
consequence, there is reason to expect that the final
answera will be more accurate when performed in parts.

It is not intended that this paper survey the en-
tire field. Kather the author hopes to indicate, on
the basis of somewhat limited experience, what his bias
is in terms of the solution of a large class of engin-
eering probleme - and to express his reasons for these
choices.
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